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05.06.2013

Seminar 6

(S6.1) Verify that Hilbert theorem 1.6.13 is a special case of the Finite Sums theorem.

Proof. Let r ∈ Z+, Z+ =
r

⋃

i=1

Ci, and l ≥ 1. Apple the Finite Sums theorem 2.4.20 to get

i ∈ [1, r] and a sequence (xn)n≥1 in Z+ such that FS
(

(xn)n≥1

)

⊆ Ci. Take n1, n2, . . . , nl to
be x1, . . . , xl in increasing order, and B := {xl+1 + . . . xl+p | p ∈ Z+}.

(S6.2) Let X be a Hausdorff topological space and (xn)n≥1 be a sequence in X.

(i) For every p ∈ βZ+, the following are satisfied:

(a) The p-limit of (xn), if exists, is unique.

(b) If X is compact, then p−lim xn exists.

(c) If f : X → Y is continuous and p−lim xn = x, then p−lim f(xn) = f(x).

(ii) lim
n→∞

xn = x implies p−lim xn = x for every non-principal ultrafilter p.

Proof. (i) Let p ∈ βZ+.

(a) Assume that x 6= y ∈ X are such that p − lim xn = x and p − lim xn = y.
Since X is Hausdorff, there are disjoint open neighboorhoods U of x and V of y.
Then AU := {n ∈ Z+ | xn ∈ U} ∈ p and AV := {n ∈ Z+ | xn ∈ V } ∈ p, hence
AU ∩ AV ∈ p. On the other hand, AU ∩ AV = ∅. We have got a contradiction
with the fact that p is a filter.

(b) Assume by contradiction that there exist a sequence (xn) and an ultrafilter p
such that p−lim xn does not exist. Then for each x ∈ X there exists an open
neighborhood Ux of x such that Ax := {n ∈ Z+ | xn ∈ Ux} ∈/ p. It follows that



the family (Ux)x∈X is an open cover of X, so from compactness, we get a finite

subset F ⊆ X with X =
⋃

x∈F

Ux. We get that

⋃

x∈F

Ax = Z+ ∈ p,

hence we must have Ax ∈ p for some x ∈ F . We have got a contradiction.

(c) Let x = p− lim xn and let V be an open neighborhood of f(x). Since f is
continuous, we have that f(U) ⊆ V for some open neighborhood U of x. Let
A := {n ∈ Z+ | xn ∈ U} and B := {n ∈ Z+ | f(xn) ∈ V }. Then A ∈ p and
A ⊆ B, hence B ∈ p.

(ii) Assume that lim
n→∞

xn = x and let p be a nonprincipal ultrafilter on Z+. If U is an

open neighborhood of x, then we get N ≥ 1 such that xn ∈ U for all n > N . Let
n = 1, . . . N . Since p 6= e(n), there exists An ∈ p such that n ∈/ An. It follows that
A1 ∩ . . . AN ⊆ Z+ \ [1, N ] = {n ∈ Z+ | n > N} ⊆ {n ∈ Z+ | xn ∈ U}. Since
A1 ∩ . . . AN ∈ p and p is a filter, we conclude that {n ∈ Z+ | xn ∈ U} ∈ p. Thus,
p−lim xn = x.

(S6.3) Let (xn)n≥1, (yn)n≥1 be bounded sequences in R, and p be a non-principal ultrafilter
on Z+.

(i) (xn) has a unique p-limit. If a ≤ xn ≤ b, then a ≤ p−lim xn ≤ b.

(ii) For any c ∈ R, p−lim cxn = c · p−lim xn.

(iii) p−lim(xn + yn) = p−lim xn + p−lim yn.

Proof. (i) Apply Proposition 2.4.26.(ib) for the compact space X = [a, b].

(ii) Apply Proposition 2.4.26.(ic) for the continuous mapping f : R → R, f(x) = cx.

(iii) Let x = p− lim xn and y = p− lim yn. For any ε > 0, Aε := {n ∈ Z+ | xn ∈
(x − ε/2, x + ε/2)} ∈ p and Bε := {n ∈ Z+ | yn ∈ (y − ε/2, y + ε/2)} ∈ p, hence
Aε ∩ Bε ∈ p. On the other hand

Aε ∩ Bε ⊆ Cε := {n ∈ Z+ | xn + yn ∈ (x + y − ε, x + y + ε)},

so Cε ∈ p. Hence, p−lim(xn + yn) = x + y.

(S6.4) Let D be set and let A be a subset of P(D) which has the finite intersection
property. Then there is an ultrafilter p on D such that A ⊆ p.



Proof. See [56, Theorem 3.8, p.50].

(S6.5) Let A = {A ⊆ Z+ | Z+ \ A is finite}. Prove that there exists a non-principal
ultrafilter U on D such that A ⊆ U .

Proof. Clearly A has the finite intersection property. Apply Proposition 2.4.5 to get an
ultrafilter U on D such that A ⊆ U . By Proposition 2.4.4.(iii), U is non-principal.

(S6.6) Let D be set, let F be a filter on D, and let A ⊆ D. Then A ∈/F if and only if
there is some ultrafilter U with F ∪ {D \ A} ⊆ U .

Proof. See [56, Corollary 3.9, p.50].

(S6.7) Let D be a set and let G ⊆ P(D). The following are equivalent.

(i) Whenever r ≥ 1 and D =
⋃r

i=1
Ci, there exists i ∈ [1, r] and G ∈ G such that G ⊆ Ci.

(ii) There is an ultrafilter U on d such that for every member A of U , there exists G ∈ G
with G ⊆ A.

Proof. See [56, Theorem 5.7, p.92].

(S6.8) Let U ⊆ P(D). The following are equivalent:

(i) U is an ultrafilter on D.

(ii) U has the finite intersection property and for each A ∈ P(D)\U there is some B ∈ U
such that A ∩ B = ∅.

(iii) U is maximal with respect to the finite intersection property. (That is, U is a maximal
member of {V ⊆ P(D) | V has the finite intersection property}.)

(iv) U is a filter on D and for any collection C1, . . . , Cn of subsets of D, if
n

⋃

i=1

Ci ∈ U ,

then Cj ∈ U for some j = 1, . . . n.

(v) U is a filter on D and for all A ⊆ D either A ∈ U or D \ A ∈ U .

Proof. See [56, Theorem 3.6, p.49].


